

National Education Policy -2020 Common Minimum Syllabus for All U P State Universities and Colleges For First Three Years of Higher Education

Subject-Biotechnology (For Three Subject Pattern)

Name	Designation	Affiliation		
Steering Committee				
Mrs. Monika S. Garg (IAS),	Additional Chief	Deptt. of Higher Education,		
Chairperson, Steering Committee	Secretary	U.P., Lucknow		
Prof Poonam Tandan	Professor,	Lucknow University,		
	Deptt. of Physics	Lucknow, U.P.		
Prof Hare Krishna	Professor	CCS University, Meerut, U.P.		
	Deptt. of Statistics			
Dr Dinesh C. Sharma	Associate Professor	K. M. Govt. Girls PG		
		College, Badalpur, G. B.		
		Nagar, U.P.		
Supervisory Committee- Science F	aculty			
Dr Vijay Kumar Singh	Associate Professor,	Agra College, Agra		
	Deptt. of Zoology			
Dr Santosh Singh	Dean,	Mahatama Gandhi Kashi		
	Deptt. of Agriculture	Vidyapeeth, Varanasi, U.P.		
Dr Baby Tabussam	Associate Professor,	Govt. Raza PG College		
	Deptt. of Zoology	Rampur, U. P.		
Dr Sanjay Jain	Associate Professor,	St. John's College, Agra		
	Deptt. of Statistics			

Syllabus Developed by-

S	Name	Designation	Department	Institution
No.				
1	Dr Vandana Rai	Professor	Biotechnology	V B S Purvanchal University,
				Jaunpur;
				e-mail:
				raivandana@rediffmail.com
2	Dr Pradeep Kumar	Associate	Biotechnology	V B S Purvanchal University,
		Professor		Jaunpur;
				e-mail: pradipk14@yahoo.co.in
3	Dr Saras	Assistant	Zoology	DAV (PG) College, Kanpur
		Professor		

	SEMESTER WISE PAPER TITLES WITH DETAILS					
Year	Semester	Course	Paper Title	Theory/	Credits	
		Code		Practical		
CEI	RTIFICATE		TOOLS AND TECHNIQUES	OF CELL	AND	
			ECULAR BIOLOGY			
First	I	B100101T	Cell Biology and Genetics	Theory	4	
Year		B100102P	Cell Biology and Genetics Lab	Practical	2	
	II	B10 0201T	Molecular Biology and Genetic Engineering	Theory	4	
		B100202P	Genetic Engineering Lab	Practical	2	
Γ	OIPLOMA IN	N TOOLS AN	D TECHNIQUES OF BIOTEC	CHNOLOG	Y	
Second Year	III	B100301T	Biochemistry and Biochemical tools	Theory	4	
		B10 0302 P	Biochemistry Lab	Practical	2	
	IV	B10 0401T	Microbiology and Immunology	Theory	4	
		B10 0402 P	Microbiology and Immunology Lab	Practical	2	
		DEGREE IN	BACHELOR OF SCIENCE		l	
Third Year	V	B10 0501 T	Biostatistics and Bioinformatics	Theory	4	
		B100502T	Animal and Plant Biotechnology	Theory	4	
		B10 0503P	Bioinformatics, Biostatistics and Tissue culture Lab	Practical	2	
	VI	B100601T	Industrial and Environmental Biotechnology	Theory	4	
		B100602T	Food Biotechnology	Theory	4	
		B100603P	Industrial and Environmental Biotechnology Lab	Practical	2	

Subject Prerequisite

The candidate should have passed (10+2) examination in science stream with PCB (Physics, Chemistry, Biology and/or Biotechnology) or PCM (Physics, Chemistry and Maths) or any other science subject.

Programme Outcomes (POs)

After completion of the B. Sc. Biotechnology programme, the candidate should be able to:

PO1	Demonstrate knowledge for in-depth analytical and critical thinking to identify, formulate and solve the issues related to Biotechnology research,
	Biotechnology Industry, Pharma industry, Medical or hospital related organizations, and Academia.
PO2	Demonstrate skills to use modern analytical tools/ software/ equipment and analyse and solve problems in various courses of biotechnology.
PO3	Execute their professional roles in society as biotechnology professionals, employers and employees in various industries, researchers and educators.
PO4	Design, perform experiments, analyse and interpret data for investigating complex problems in biotechnology and related fields.
PO5	Demonstrate learning skills to work as a team in a multidisciplinary environment.
PO6	Design and develop sustainable solutions to major biological problems by applying appropriate biotechnology tools.
PO7	Develop skills, attitude and values required for self-directed, lifelong learning and professional development.
PO8	Acquire knowledge and understanding of norms and ethics in the field of biotechnology.

PROGRAMME SPECIFIC OUTCOMES (PSOS)			
CERTI	FICATE IN TOOLS AND TECHNIQUES OF CELL AND MOLECULAR		
	BIOLOGY		
First	This course introduces the knowledge of cell biology, genetics, molecular		
Year	biology and genetic engineering. After completion of this certificate course,		
	students will be able to –		
	PSO1: demonstrate and apply their knowledge of cell biology, genetics,		
	molecular biology and genetic engineering to solve the problems related to the		
	field of biotechnology		
	PSO2: gain knowledge about the application of various types of microscope,		
	karyotyping, banding techniques, chromosome painting and FACS.		
	PSO3: understand the basic concepts of genetics and molecular biology such as		
	inheritance pattern, DNA replication, transcription and translation		
	PSO4: understand and perform various recent molecular and recombinant DNA		
	technology techniques in early diagnosis and prognosis of human diseases.		
	PSO5: perform experiments of DNA isolation, agarose gel electrophoresis,		
	gene cloning, transformations, protein expression and purification. This		

experience would enable them to begin a career in industry that engages in genetic engineering as well as in research laboratories conducting fundamental research.

PSO6: apply at technical positions in different research laboratories, diagnostic centres and industries.

DIPLOMA IN TOOL AND TECHNIQUES IN BIOTECHNOLOGY

Second Year

After completion of diploma course, students will be able to-

PSO1: familiarize with basic laboratory instruments and understand the principle of measurements using those instruments with experiments in biochemistry.

PSO2: understand the significance of Biochemistry and basics of enzymes.

PSO3: learn the chemistry, structure and functions of major bio-molecules and metabolism of carbohydrate, protein etc.

PSO4: understand different biochemical tools and techniques such as chromatography, electrophoresis, X-ray diffraction, NMR and mass spectrometry

PSO5: perform different experiments based on the techniques such as chromatography, electrophoresis, centrifugation etc.

PSO6: understand the different methods of sterilization

PSO7: understand and also able to perform different immunological techniques like agglutination reaction, ABO typing and ELISA.

DEGREE IN BACHELOR OF SCIENCE

Third Year

After completing the three years degree course in Biotechnology, the students will be able to –

PSO1: demonstrate the concepts in computational Biology. Understand the interrelationship between Biology and Computer

PSO2: acquire knowledge in different domains of biotechnology enabling their application in industry, research and academia.

PSO3: perform and analyse the results of experiments using basic laboratory techniques of cell biology, molecular biology, genetic engineering, biochemistry, immunology, microbiology, bioinformatics, biostatistics, animal and plant biotechnology and Food biotechnology.

PSO4: recognize the foundations of modern biotechnology and explain the principles that form the basis for recombinant technology.

PSO5: develop an ability to properly understand the technical aspects of existing technologies that help in addressing the biological and medical challenges faced by humankind.

PSO6: exhibit ability to do research independently as well as in collaboration.

PSO7: recognize the importance of Bioethics, IPR, and entrepreneurship.

Programme/Class: Certificate	Year: First (1)	Semester: First (I)		
Subject: Biotechnology				
Couse Code: B100101T Course Title: Cell Biology and Genetics				
Course Outcomes (COs)				

This course introduces the principles of cell biology and genetics. After completion of this course, students will be able to-

- learn different areas of cell biology including the structure and functions of cell, its organelles such as mitochondria, nucleus etc.
- understand how genetic information is transmitted in organism.

Credits: 4

- understand the role of cytoskeleton and its remodelling including the diseases associate with improper remodelling.
- earn how the synthesized proteins are transported to different organelles.
- understand the regulation of cell cycle, programmed cell death and Cancer.

Core Compulsory

• learn different cell biology techniques like karyotyping, chromosome banding, FISH, FACS, centrifugation and microscopy.

Core Compulsory			
Maximum Marks: 100 Minimum Passing Marks: As per University			
(75(UE)+25(CIE))			
ber of Lectures-Tutorials-Practical (in hours per week)L-T-F			
Topics	No. of Lectures		
Introduction and history of Biotechnological science	2		
with special reference to contribution of Indian			
scholars in biological sciences			
 Prototype structure of animal, plant and bacterial cells, 	8		
Diversity of cell size and shape			
Cell theory			
C-value paradox			
Cell Membrane: Chemical components of biological membranes, organization and Fluid Mosaic Model, and membrane transport.			
	9		
 Lysosomes: Vacuoles and micro bodies: Structure and functions 			
Ribosomes: Structures and function including role in protein synthesis.			
Mitochondria: Structure and function, Genomes, biogenesis.			
 Chloroplasts: Structure and function, genomes, biogenesis 			
Nucleus: Structure and function, nuclear envelope			
Chromosome structure:	9		
Chromosomes: chromatin and chromosomes			
organization, euchromatin and heterochromatin,			
nucleosome, metaphase chromosome, genes and			
	Marks: 100 ber of Lectures-Tutorials-Practical (in hours per week)L-T-F Topics Introduction and history of Biotechnological science with special reference to contribution of Indian scholars in biological sciences Prototype structure of animal, plant and bacterial cells, Diversity of cell size and shape Cell theory C-value paradox Cell Membrane: Chemical components of biological membranes, organization and Fluid Mosaic Model, and membrane transport. Cytoskeleton and Extra cellular matrix Structure and Function of Cell organelles: Lysosomes: Vacuoles and micro bodies: Structure and functions Ribosomes: Structures and function including role in protein synthesis. Mitochondria: Structure and function, Genomes, biogenesis. Chloroplasts: Structure and function, genomes, biogenesis Nucleus: Structure: Chromosome structure: Chromosomes: chromatin and chromosomes organization, euchromatin and heterochromatin,		

	chromosomes.	
	DNA as genetic material, Structure of DNA	
	Structural and numerical changes in human	
	chromosomes and ploidy in plants.	
	Mutations: Types of mutations, spontaneous and	
	induced mutations, Physical and chemical mutagens	
V	Cell cycle, Cancer and Cell Signaling:	7
	Cell Cycle: Mitosis and Meiosis: Control points in	
	cell-cycle progression in yeast and higher organisms	
	Cell senescence and programmed cell death	
	 Cancer – chromosomal disorders, oncogenes and 	
	tumor suppressor genes	
	Introduction to cell signalling and cell –cell interaction	
VI	Mendelian and nonmendelian genetics:	8
	Historical developments in the field of genetics.	
	Organisms suitable for genetic experimentation and	
	their genetic significance	
	Mendelian genetics : Mendel's experimental design, manabability di bability and tri bability areasses. Levy of	
	monohybrid, di-hybrid and tri hybrid crosses, Law of	
	segregation & Principle of independent assortment • Allelic interactions: Concept of dominance,	
	recessiveness, incomplete dominance, co-dominance,	
	semi-dominance, pleiotropy	
	 Sex determination and sex linkage: Mechanisms of sex 	
	determination, Environmental factors and sex	
	determination, sex differentiation, Barr bodies, dosage	
	compensation, genetic balance theory	
VII	Linkage, crossing over and population genetics:	8
	Linkage, crossing—over and chromosome and genetic	
	mapping	
	• Extra chromosomal inheritance: Rules of extra nuclear	
	inheritance, maternal effects, maternal inheritance,	
	cytoplasmic inheritance, organelle heredity, genomic	
	imprinting.	
	Genetic Code: deciphering genetic code; degeneracy,	
	unusual codons in mitochondria Mutations: types,	
	mechanisms	
	Evolution and population genetics: Hardy Weinberg	
	law (prediction, derivation), allelic and genotype frequencies, changes in allelic frequencies,	
	frequencies, changes in allelic frequencies, evolutionary genetics, natural selection.	
	evolutionally genetics, natural selection.	
VIII	Cytological techniques:	9
, 111	Microscopy and staining techniques	,
	• Microtomy	
	Karyotyping	
	 Chromosome banding, 	

- in situ hybridization and FISH
- chromosome painting
- Fluorescence Activated Cell Sorting

- 1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2014). **Molecular Biology of the Cell** (6th Ed.). New York: Garland Science
- 2. Cooper, G. M., and Hausman, R. E. (2013). **The Cell: a Molecular Approach** (6th Ed.). Washington: ASM; Sunderland.
- 3. Karp, G. Cell and Molecular Biology. Concepts and experiments. John Harris, D., Wiley & sons, New York
- 4. Iwasa J., Marshal W. Karp's Cell Biology(2018) (8th edition) Wiley & Sons, NY
- 5. Iwasa J., Marshal W. **Karp's Cell and Molecular Biology** . Concepts and experiments. (2015) (8th edition) Wiley & sons, New York
- 6. Watson, J. D. Baker TA, Bell, SP Gann, A. Levine, M. Losick R. (2008). **Molecular Biology of the Gene** (5th ed.). Pearson
- 7. Lodish, H F. Berk, A. Kaiser, CA, Krieger, M. Bretscher, A. Ploegh, H. Aman, A. Martin, K. (2016). **Molecular Cell Biology** (8th Ed.). New York: W.H. Freeman
- 8. Gupta P.K. Cell and Molecular Biology 2018. 5th edition Rastogi Publication India.
- 9. Hartl, D. L., & Jones, E. W. (1998). **Genetics: Principles and Analysis**. Sudbury, MA: Jones and Bartlett.
- 10. Pierce, B. A. (2005). **Genetics: a Conceptual Approach**. New York: W.H. Freeman.
- 11. Tamarin, R. H., & Leavitt, R. W. (1991). **Principles of Genetics**. Dubuque, IA: Wm. C. Brown.
- 12. Smith, J. M. (1998). **Evolutionary Genetics.** Oxford: Oxford University Press Genetics: Principles and Analysis Hartl and Jones.
- 13. Gardner EJ, Simmons MJ, Sunstad DP. **Principles of Genetics**. 8th Edition. John Wiley and Sons.
- 14. Snustand DP, Simmons MJ. **Principles of Genetics**. (2016) ^{7th} Edition. John Wiley and Sons.
- 15. Verma PS, Agarwal VK. Cell Biology, Genetics, Molecular Biology, Evolution and Ecology. (2004). S Chand and Company Ltd.
- 16. Satyanarayana U (2020). Biotechnology. Books and Allied (P) Ltd
- 17. Singh BD. (2015). Biotechnology: Expanding Horizons (4th edition). Kalyani Publishers
- 18. Dubey RC. (2014) A Textbook of Biotechnology(5th edition) S Chand and Company Ltd.
- 19. सिंह बी डी (2017) बायोटेक्नोलोजी Kalyani Publishers
- 20. पी के गुप्ता, कोशिका विज्ञान एवम अनुवांशिकी, 2015 2nd edition Rastogi Publications
- 21. सिंह बी डी, आनुवंशिकी के आधार. (2017) Kalyani Publishers
- 22. सोनी के सी, स्वरंकार गायत्री. आधुनिक कोशिका विज्ञान, 2018 CBC

Other course books published in Hindi must be prescribed by the University/College

Suggested link

- https://ocw.mit.edu/courses/find-bytopic/#cat=science&subcat=biology&spec=cellbiology
- https://ocw.mit.edu/courses/find-by-topic/#cat=science&subcat=biology&spec=genetics

- https://nptel.ac.in/courses/102/103/102103012/
- https://nptel.ac.in/courses/102/106/102106025/
- https://nptel.ac.in/courses/102/103/102103015/

Suggested Digital platform/Web link

Course prerequisite

The candidate should have passed (10+2) examination in science stream with PCB (Physics ,Chemistry, Biology and/or Biotechnology) or PCM (Physics , Chemistry and Maths) or any other science subject.

Suggested Continuous Internal Evaluation (CIE) methods

Total marks: 25 10 marks for Test

10 marks for presentation along with assignment

05 marks for Class interactions

Further Suggestions: None

Programme/Class: Certificate	Year: First (1)	Semester: First (I)		
Subject: Biotechnology				
Couse Code: B100102P Course Title: Cell Biology and Genetics Lab				
Course Outcomes (COs)				

After completion of this course, students will be able to-

- learn, understand and develop skill and hands on training in basics of cell biology and genetics.
- be able to differentiate between plant and animal cells
- be analysed different stages of mitosis and meiosis

0 C a.	mary sour animoromic stag	es of fintests and filefolis	
Credits: 2		Core Compulsory	
Maximum Marks: 100		Minimum Passing Marks: As per University norms	
(75(UE)+25	(75(UE)+25(CIE))		
Total Num	Total Number of Lectures-Tutorials-Practical (in hours per week)L-T-P: 0-0-4		
		Topics	No. of Lectures
	1. Introduc	tion to safety measures in Laboratories	60
	2. Preparati	ion of solutions and buffers	
	2 Davisson	unt bandling and ningtting	

Equipment handling and pipetting
 Study of structure of any Prokaryotic and Eukaryotic cell.
 Microtomy: Fixation, block making, section cutting, double staining of animal tissues like liver, oesophagus, stomach, pancreas, intestine, kidney etc.
 Cell division in onion root tip/ insect (grasshopper) gonads.
 Vital Staining of Mitochondria with Janus green B.
 Demonstration of diversity of cell types (Muscle, Neuron)

9. Demonstration of Sex chromatin in buccal smear.

- 10. Karyotype preparation.
- 11. Preparation of polytene chromosomes from salivary gland of Chironomous larvae.
- 12. Genetics problems based on : (i) Mendel's law (ii) Gene mapping and (iii) Transposable elements.
- 13. Ames test for mutagenesis.
- 14. Genetic experiment Drosophila model

- 1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2014). **Molecular Biology of the Cell** (6th Ed.). New York: Garland Science
- 2. Cooper, G. M., and Hausman, R. E. (2013). **The Cell: a Molecular Approach** (6th Ed.). Washington: ASM; Sunderland.
- 3. Karp, G. Cell and Molecular Biology. Concepts and experiments. John Harris, D., Wiley & sons, New York
- 4. Iwasa J., Marshal W. Karp's Cell Biology(2018) (8th edition) Wiley & Sons, NY
- 5. Iwasa J., Marshal W. **Karp's Cell and Molecular Biology** . Concepts and experiments. (2015) (8th edition) Wiley & sons, New York
- 6. Watson, J. D. Baker TA, Bell, SP Gann, A. Levine, M. Losick R. (2008). **Molecular Biology of the Gene** (5th ed.). Pearson
- 7. Lodish, H F. Berk, A. Kaiser, CA, Krieger, M. Bretscher, A. Ploegh, H. Aman, A. Martin, K. (2016). **Molecular Cell Biology** (8th Ed.). New York: W.H. Freeman
- 8. Gupta P.K. Cell and Molecular Biology 2018. 5th edition Rastogi Publication India.
- 9. Hartl, D. L., & Jones, E. W. (1998). **Genetics: Principles and Analysis**. Sudbury, MA: Jones and Bartlett.
- 10. Roskam's J. Rodgers L.(2002). Lab Ref: A Handbook of Recipes, Reagents, and other reference tools for use at the Bench. Cold Spring Harbor Laboratory Press. USA.
- 11. Barker K (2004). **At the Bench: A laboratory Navigator**. Cold Spring Harbor Laboratory Press. USA

Course books published in Hindi must be prescribed by the University/College

Course prerequisite

The candidate should have passed (10+2) examination in science stream with PCB (Physics ,Chemistry, Biology and/or Biotechnology) or PCM (Physics , Chemistry and Maths) or any other science subject.

Suggested Continuous Internal Evaluation (CIE) methods

Total marks: 25

10 marks for Test

10 marks for presentation along with assignment

05 marks for Class interactions

Further Suggestions: None

Programme/Class: Certificate	Year: First (1)	Semester: Second (II)		
Subject: Biotechnology				
Couse Code: B100201T Course Title: Molecular Biology and Genetic Engineering				
Course Outcomes (COs)				

Student will be able to-

- learn and understand the important discoveries that are made in the field of molecular biology.
- learn key molecular events that occur during the DNA replication, transcription, translation and regulation of gene concept.
- gain knowledge on the foundation of genetic engineering and their applications in biological research as well as in biotechnology industries.
- understand gene concept, plasmids, and wide range of techniques, especially modern molecular tools in diagnosis.
- acquainted with various techniques of genetic engineering and their applications in biological research, diagnostics as well as in biotechnology industries.

biological research, diagnostics as well as in biotechnology industries.				
Credits: Core Compulsory				
Maximum	sity norms			
(75(UE)+25				
	ber of Lectures-Tutorials-Practical (in hours per week)L-T-F			
Unit	Topic	No. of Lectures		
I	Gene organization and regulation of gene expression:	7		
	Structure of DNA, Types of DNA			
	Gene organization in prokaryotes and eukaryotes,			
	polycistronic genes, split genes promoters, enhancers.			
	Regulation of gene expression: Prokaryotes: lac and			
_	trp operons in <i>E. coli</i> .			
II	DNA Replication and DNA polymerases:	7		
	Replication of genetic material in prokaryotes and			
	eukaryotes			
	A brief description of initiation at replication origins			
	and its cell cycle regulation.			
	Structure and function of prokaryotic and eukaryotic			
	DNA polymerases			
III	Transcription and mRNA processing:	8		
	RNA structure and types of RNA			
	Mechanism of transcription in prokaryotes and			
	eukaryotes: transcription factors, structure of			
	prokaryotic and eukaryotic RNA polymerases,			
	initiation, elongation and termination.			
	• RNA processing: processing of mRNA (Splicing,			
	capping and polyadenylation)			
IV	Prokaryotic and eukaryotic translation:	7		
	• Ribosome structure and assembly, tRNA,			
	aminoacyltRNA synthetases,			
	Mechanism of initiation, elongation and termination of			
	polypeptides, Fidelity of translation, Inhibitors of			

	translation.	
	 Posttranslational modifications of proteins. 	
V	Vectors:	7
	• Cloning vectors (plasmids, cosmids, bacterial artificial chromosomes and yeast artificial chromosomes),	
	• shuttle vectors,	
	expression vectors	
VI	Enzymes used in DNA manipulating:	8
	Restriction endonuclease	
	• Ligases	
	 Polymerases 	
	• Kinases	
	Alkaline phosphatases	
	Reverse Transcriptase	
VII	Genomic Library, PCR, Sequencing etc:	8
	 Preparation and comparison of Genomic and cDNA library. 	
	 PCR and its applications. 	
	DNA Sequencing.	
	Site directed mutagenesis	
	 Protein engineering concepts and examples (any two). 	
VIII	Molecular Biology techniques:	8
	DNA isolation (Plasmid/ Genomic DNA isolation)	
	Blotting (Southern, Northern, Western)	
	Electrophoresis of nucleic acids and proteins	
	Gene cloning, Screening and characterization of cloned DNA	
	DNA Fingerprinting	
	RFLP, RAPD	

- 1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2014). **Molecular Biology of the Cell** (6th Ed.). New York: Garland Science
- 2. Cooper, G. M., and Hausman, R. E. (2013). **The Cell: a Molecular Approach** (6th Ed.). Washington: ASM; Sunderland.
- 3. Karp, G. Cell and Molecular Biology. Concepts and experiments. John Harris, D., Wiley & sons, New York
- 4. Iwasa J., Marshal W. Karp's Cell Biology(2018) (8th edition) Wiley & Sons, NY
- 5. Iwasa J., Marshal W. **Karp's Cell and Molecular Biology** . Concepts and experiments. (2015) (8th edition) Wiley & sons, New York
- 6. Watson, J. D. Baker TA, Bell, SP Gann, A. Levine, M. Losick R. (2008). **Molecular Biology of the Gene** (5th ed.). Pearson
- 7. Lodish, H. F. Berk, A. Kaiser, CA, Krieger, M. Bretscher, A. Ploegh, H. Aman, A. Martin, K. (2016). **Molecular Cell Biology** (8th Ed.). New York: W.H. Freeman
- 8. Gupta P.K. Cell and Molecular Biology 2018. 5th edition Rastogi Publication India.
- 9. Brown TA. **Gene cloning and DNA analysis: An introduction**. (2016) 7th Edition. Wiley-Blackwell
- 10. Old, R. W., Primrose, S. B., & Twyman, R. M. (2006). **Principles of Gene Manipulation and Genomics**, 7th Edition: Blackwell Publishing.
- 11. Krebs JE, Goldstein ES and Kilpatrick ST (2014) Lewin's Gene XII, Jones and Barlett

Publisher

- 12. Brown, T. A. (2018). **Genomes** 4.(4th edition) New York: Garland Science Pub.
- 13. Green, M. R., & Sambrook, J. (2014) Fourth Edition. **Molecular Cloning: a Laboratory Manual.** Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
- 14. Micklos, DA & Freyer, CA. **DNA Science: A first course in Recombinant DNA Technology**(2nd Edition) –Cold Spring harbor laboratory press, NY
- 15. Satyanarayana U (2020). Biotechnology. Books and Allied (P) Ltd
- 16. Singh BD. (2015). Biotechnology: Expanding Horizons (4th edition). Kalyani Publishers
- 17. Dubey RC. (2014) A Textbook of Biotechnology(5th edition) S Chand and Company Ltd.
- 18. सिंह बी डी(2017) बायोटेक्नोलोजी Kalyani Publishers

Course books published in Hindi must be prescribed by the University/College

Suggested link

- https://ocw.mit.edu/courses/biology/7-01sc-fundamentals-of-biology-fall-2011/molecular-biology/
- https://ocw.mit.edu/courses/biology/7-01sc-fundamentals-of-biology-fall-2011/molecular-biology/transcription-translation/
- https://ocw.mit.edu/courses/biology/7-01sc-fundamentals-of-biology-fall-2011/molecular-biology/gene-regulation-and-the-lac-operon/
- https://ocw.mit.edu/courses/biology/7-01sc-fundamentals-of-biology-fall-2011/recombinant-dna/
- https://ocw.mit.edu/courses/biology/7-01sc-fundamentals-of-biology-fall-2011/recombinant-dna/agarose-gel-electrophoresis-dna-sequencing-pcr/
- https://ocw.mit.edu/courses/biology/7-01sc-fundamentals-of-biology-fall-2011/recombinant-dna/basic-mechanics-of-cloning/
- https://ocw.mit.edu/courses/biological-engineering/20-109-laboratory-fundamentals-in-biological-engineering-fall-2007/labs/mod1 3/
- https://nptel.ac.in/courses/102/103/102103045/#

Suggested Digital platform/Web link

Course prerequisite

To study this course, student must have passed semester I.

Suggested Continuous Internal Evaluation (CIE) methods

Total marks: 25 10 marks for Test

10 marks for presentation along with assignment

05 marks for Class interactions

Further Suggestions: None

Programme/Class: Certificate	Year: First (1)	Semester:		
		Second (II)		
Subject: Biotechnology				
Couse Code: B100202P Course Title: Genetic Engineering Lab				
Course Outcomes (COs)				

After completion of the course, the student shall be able to -

- prepare different bacterial growth media,
- understand principals and methods of competent cell preparation, restriction digestion, gene ligation, gene cloning, and transformation i. e gene manipulation.
- understand the method of agarose electrophoresis for plasmid and genomic DNA separation
- understand the method of blotting and PCR

Credits: 2 Core Compulsory				
Maximum Marks: 100		Minimum Passing Marks: As per University		
(75(UE)+25	(75(UE)+25(CIE)) norms			
Total Number of Lectures-Tutorials-Practical (in hours per week)L-T			P: 0-0-4	
	7	Горіс	No. of Lectures	
	_	olutions for Molecular Biology	60	
	experiments.			

experiments.	60
2. Preparation of bacterial growth medium (L.B., 2XYT)	
3. Competent cell preparation.	
4. Transformation of <i>E.coli</i> . cells (color selection of transformants – with or without inserts) X – gal and IPTG.	
5. Isolation of Plasmid DNA by alkaline lysis method	
6. Isolation of genomic DNA from bacterial cells.	
7. Agarose gel electrophoresis of genomic DNA & plasmid DNA	
8. Concentration estimation by agarose gel electrophoresis	
 Preparation of restriction enzyme digests of DNA samples 	
10. Ligation	
11. Southern blotting	
12. PCR	

Suggested Reading

- 1. Brown TA. **Gene cloning and DNA analysis: An introduction**. (2016) 7th Edition. Wiley-Blackwell
- 2. Old, R. W., Primrose, S. B., & Twyman, R. M. (2006). **Principles of Gene Manipulation and Genomics**, 7th Edition: Blackwell Publishing.
- 3. Krebs JE, Goldstein ES and Kilpatrick ST (2014) Lewin's Gene XII, Jones and Barlett Publisher
- 4. Brown, T. A. (2018). **Genomes** 4.(4th edition) New York: Garland Science Pub.
- 5. Green, M. R., & Sambrook, J. (2014) Fourth Edition. **Molecular Cloning: a Laboratory Manual.** Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
- 6. Micklos, DA & Freyer, CA. DNA Science: A first course in Recombinant DNA

Technology (2nd Edition) –Cold Spring Harbor laboratory press, NY

- 7. Roskam's J. Rodgers L.(2002). Lab Ref: A Handbook of Recipes, Reagents, and other reference tools for use at the Bench. Cold Spring Harbor Laboratory Press. USA.
- 8. Barker K(2004). **At the Bench: A laboratory Navigator**. Cold Spring Harbor Laboratory Press. USA

Course books published in Hindi must be prescribed by the University/College

Course prerequisite

To study this course, student must have passed semester I.

Suggested Continuous Internal Evaluation (CIE) methods

Total Marks: 25 10 marks for Test

10 marks for presentation along with assignment

05 marks for Class interactions

Further Suggestions: None

Programme/Class: Diploma	Year: Second (2)	Semester: Third (III)		
Subject: Biotechnology				
Course Title: Biochemistry and Biochemical tools				
Course Outcomes				

After successful completion of the course, student will be able to:

- understand the significance of Biochemistry.
- learn the chemistry of carbohydrates, lipids, proteins and amino acids.
- understand the basics of enzymes.

III

Nucleic acids:

- understand the metabolism of carbohydrate and proteins
- know the chemical structure of nucleotides including their components, describe primary, secondary structure of DNA and RNA.

SEC	ondary structure of DNA and Kr	NA.		
Credits: 4		Core Compulsory		
Maximum	Marks: 100	Minimum Passing Marks: As per University norms		
(75(UE)+2	5(CIE))			
Total Nun	ber of Lectures-Tutorials-Pra	actical (in hours per week)L-T-P: 4-0	-0	
Unit		No. of		
		_	Lectures	
I	Amino acids and Protein:		7	
	 Structure and propertie 	s of Amino acids		
	 Types of proteins and t 	heir classification		
	 Forces stabilizing prote 	in structure.		

II	Carbohyd	lrates:						
	• Str	ucture,	Function	and	properties	of	Monosaccharides,	
	Disaccharides and Polysaccharides.							

Denaturation and renaturation of proteins.

Different Level of structural organization of proteins.

- Homo and Hetero Polysaccharides, Mucopolysaccharides,
 Bacterial cell wall polysaccharides, Glycoprotein's and their
- Bacterial cell wall polysaccharides, Glycoprotein's and their biological functions.

7

• Structure and functions:
 Physical & chemical properties of Nucleic acids, nucleosides
& nucleotides, purines & pyrimidines,. Biologically
important nucleotides,
 Double helical model of DNA structure and forces
stabilizing DNA double helical structure, A, B and Z – DNA,
denaturation and renaturation of DNA.

	denaturation and renaturation of DNA.	
IV	Lipids:	6
	Structure and functions of Lipids	
	 Classification, nomenclature and properties of fatty acids, essential fatty acids. 	
	Phospholipids, sphingolipids, glycolipids, cerebrosides, gangliosides Prostaglanding Cholesteral	

	 Phospholipids, sphingolipids, glycolipids, cerebrosides, 	
	gangliosides, Prostaglandins, Cholesterol.	
V	Enzymes and Enzyme classification:	8
	Nomenclature and classification of Enzymes, brief	
	introduction to active site.	
	Kinetics of enzyme actions	
	Cofactors, coenzyme, prosthetic groups, holoenzyme and	

	 apoenzyme Enzyme inhibition – competitive, Non-competitive & uncompetitive type. 	
VI	 Metabolism: Metabolism of carbohydrates- Gluconeogenesis, Glycolysis, TCA, and Glyoxylate cycle Metabolism of fatty acids-oxidation of saturated, unsaturated fatty acids Oxidation of amino acids and urea cycle. 	9
VII	 Vitamins and Hormone: Introduction to Vitamins, hormones, Phytohormones and their role Deficiency of vitamins and hormones and related human diseases. 	8
VIII	Techniques: Chromatography (Column chromatography, Ion- exchange chromatography, Gel- permeation (molecular sieve, chromatography, Affinity chromatography, Paper chromatography, Thin-layer chromatography, Gas chromatography and HPLC) Spectroscopy (UV-Vis) NMR X-ray diffraction Centrifugation Mass spectrometry	8

- 1. Berg, JM Tymoczko, JL. Gatto, GJ., Stryer, L. (2015). **Biochemistry.** (8th ed.) W H Freeman and Company New York.
- 2. Nelson DL. Cox MM. (2017) **Lehninger Principles of Biochemistry** (7th ed.). W H Freeman New York.
- 3. Voet, D., & Voet, J. G. (2016). Biochemistry (5th ed.). Hoboken, NJ: J. Wiley & Sons.
- 4. Rodwell VW. Bender D. Botham KM. Kennelly PJ Weil PA.(2018). **Harper's Illustrated Biochemistry**.(31st edition) McGraw-Hill Education
- 5. Hofmann A. Clokie S. **Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology**. (2018) (8th edition)Cambridge University Press
- 6. Boyer RF. (2012) **Biochemistry laboratory : modern theory and techniques**(2nd Edition). Pearson Education, Inc
- 7. Jain JL. Jain S. Jain N. (2005). **Fundamentals of Biochemistry**. (6th edition). S Chand and Company Ltd.
- **8.** Satyanarayana U. Chakrapani U. (2013). **Biochemistry**.(4th edition). Elsevier and Books and Allied (P) Ltd

Course books published in Hindi must be prescribed by the University/College

Suggested link

• https://ocw.mit.edu/courses/findbytopic/#cat=science&subcat=biology&spec=biochemis

try

- https://ocw.mit.edu/courses/find-by-topic/#cat=healthandmedicine&subcat=spectroscopy
- https://ocw.mit.edu/courses/chemistry/5-07sc-biological-chemistry-i-fall-2013/module-i/session-4/
- https://ocw.mit.edu/courses/biology/7-016-introductory-biology-fall-2018/lecture-videos/lecture-4-enzymes-and-metabolism/
- https://ocw.mit.edu/courses/chemistry/5-07sc-biological-chemistry-i-fall-2013/module-i/session-3/
- https://nptel.ac.in/courses/104/105/104105076/
- https://nptel.ac.in/courses/102/106/102106087/

Suggested Digital platform/Web link

Course prerequisite

To study this course, student must have passed semester II.

Suggested Continuous Internal Evaluation (CIE) methods

Total Marks: 25 10 marks for Test

10 marks for presentation along with assignment

05 marks for Class interactions

Further Suggestions: None

Programme/Class: Diploma	Year: Second (2)	Semester: Third(III)		
Subject: Biotechnology				
Couse Code: B100302P Course Title: Biochemistry Lab				
Course Outcomes				

Students will get practical exposure to commonly used biochemical techniques and also they become familiar to use instruments like calorimeter, pHmeter etc.

Introduce the primary steps in biomolecules (focus on proteins) purification which includes various methods in isolation and quantitation of proteins.

- 2. Learn how to separate proteins from a heterogenous mixture.
- 3. Learn to apply important chromatographic techniques to purify biomolecules
- 4. Familiarize the working principles of electrophoresis and UV/Vis and fluorescence spectroscopic techniques and application of the knowledge to get basic structural information of proteins

Credits: 2	Core Compulsory
Maximum Marks: 100	Minimum Passing Marks: As per University norms
(75(UE)+25(CIE))	

Total Number of Lectures-Tutorials-Practical (in hours per week)L-T-P: 0-0-4

Topic	No. of Lectures
1. Preparation of normal and molar solutions	60
2. Preparation of buffers.	
3. To study activity of any enzyme under optimum conditions.	
4. To study the effect of pH, temperature on the activity	
of salivary amylase enzyme.	

- 5. Estimation of blood glucose by glucose oxidase method
- 6. Spectrophotometer/colorimeter(Beer-Lambert's law) Estimation of Protein by UV-vis Spectrometer
 - i. (i)Lowry et al. method for estimation of protein (ii)Biuret method for estimation of protein
- 7. Spectroscopic estimation of DNA (UV)
- 8. Electrophoresis (a)Electrophoresis of red blood cell proteins (b) Electrophoresis of DNA
- 9. Separation of Amino acids by paper chromatography.
- 10. Qualitative tests for Carbohydrates, lipids and proteins
- 11. Estimation of DNA by Diphenylamine and RNA by Orcinol methods.
- 12. Estimation of reducing and total sugar by DNS and H₂SO₄-phenol methods.
- 13. Effect of pH and temperature on enzyme activity.
- 14. Determination of pK_a value of a weak acid by titrating with strong base.

- 1. Berg, JM Tymoczko, JL. Gatto, GJ Jr. Stryer, L. (2015). **Biochemistry.** (8th ed.) W H Freeman and Company New York.
- 2. Nelson DL. Cox MM. (2017) **Lehninger Principles of Biochemistry** (7th ed.). W H Freeman New York.
- 3. Voet, D., & Voet, J. G. (2016). **Biochemistry** (5th ed.). Hoboken, NJ: J. Wiley & Sons.
- 4. Rodwell VW. Bender D. Botham KM. Kennelly PJ Weil PA.(2018). **Harper's Illustrated Biochemistry**.(31st edition) McGraw-Hill Education
- Hofmann A. Clokie S. Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology. (2018) (8th edition)Cambridge University Press
- 6. Boyer RF. (2012) **Biochemistry laboratory : modern theory and techniques**(2nd Edition). Pearson Education, Inc
- 7. Jain JL. Jain S. Jain N. (2005). **Fundamentals of Biochemistry**. (6th edition). S Chand and Company Ltd.
- 8. Satyanarayana U. Chakrapani U. (2013). **Biochemistry**.(4th edition). Elsevier and Books and Allied (P) Ltd
- 9. R.K. **Practical Biochemistry** David Plummer. **Pub**: Tata McGraw Hill
- 10. Roskam's J. Rodgers L.(2002). Lab Ref: A Handbook of Recipes, Reagents, and other reference tools for use at the Bench. Cold Spring Harbor Laboratory Press. USA.
- 11. Barker K(2004). **At the Bench: A laboratory Navigator**. Cold Spring Harbor Laboratory Press. USA

Course books published in Hindi must be prescribed by the University/College

Course prerequisite

To study this course, student must have passed semester II.

Suggested Continuous Internal Evaluation (CIE) methods

Total marks: 25

10 marks for Test
10 marks for presentation along with assignment
05 marks for Class interactions
Further Suggestions: None

Programme/Class: Diploma	Year: Second (2)	Semester: Fourth (IV)
Subject: Biotechnology		
Couse Code: B100401T Course Title: Microbiology and Immunology		
Course Outcomes		

- On the successful completion of the course, student will be able to:

 the pioneers in microbiology and their contributions

 understand the physical and chemical method of sterilization

 analyze the media composition and grow the desired microbe.

 understand the methods of cultivation of microorganisms

 - understand different staining methods

- understand and differentiate the different types of microbes.
- understand the principles of immunology
- learn about structural features of components of immune system as well as their function and development of immune system and mechanisms by which our body elicits immune response.
- predict about nature of immune response that develops against bacterial, viral or parasitic infection, and prove it by designing new experiments.
- understand different tools and techniques of immunology
- understand the biology of different vaccines against infectious agents

Credits: 4	dits: 4 Core Compulsory		
Maximum Marks: 100 Minimum Passing Marks: As per University		rsity norms	
(75(UE)+25	(75(UE)+25(CIE))		
Total Num	ber of Lectures-Tutorials-Practical (in hours per week)L-T-I	P: 4-0-0	
Unit	Topic	No. of Lectures	
I	Diversity and classification of microbes:	7	
	• Fundamentals, History and Evolution of Microbiology.		
	• Classification of microorganisms: Microbial		
	taxonomy, criteria used including molecular		
	approaches, Microbial phylogeny and current		
	classification of bacteria.		
	Microbial Diversity: Distribution and characterization		
	Prokaryotic and Eukaryotic cells,		
	Morphology and cell structure of major groups of		
	microorganisms - Viruses, Bacteria, Algae, Fungi, and		
	Protozoa.		
II	Microbial growth:	8	
	Growth curve, Generation time, synchronous batch		
	and continuous culture, measurement of growth and		
	factors affecting growth of bacteria.		
	Microbial Metabolism: Metabolic pathways, amphi-		
	catabolic and biosynthetic pathways		

	Bacterial Reproduction: Transformation, Transduction and Conjugation. Endospores and sporulation in	
	bacteria.	
III	Pathogen contamination and infectious diseases:	8
111	Water Microbiology: Bacterial pollutants of water,	o
	coliforms and non coliforms. Sewage composition and	
	its disposal.	
	-	
	Food Microbiology: Important microorganism in food Microbiology: Moulds, Venets, heatering	
	Microbiology: Moulds, Yeasts, bacteria.	
	Major food born infections and intoxications, Preservation of various types of foods Formanted.	
	Preservation of various types of foods. Fermented Foods.	
	Bacterial diseases of human- Tuberculosis, Tetanus, Typhoid Cholore	
	Typhoid, Cholera	
TX7	• Viral diseases of human-Hepatitis B andC, AIDS	7
IV	Sterilization, cultivation and staining:	7
	Principals and applications of different methods of	
	sterilization	
	Cultivation and Maintenance of microorganisms:	
	Nutritional categories of micro-organisms	
	Methods of isolation, Purification and preservation.	
	Principals of staining and types of staining	
V	Introduction to immune system:	8
	• Introduction to Immunology, Components of	
	mammalian immune system (cell and organs), Innate	
	and Adaptive immunity	
	Humoral and cell mediated immune response, Clonal	
	selection theory	
	An overview of primary and secondary immune	
	responses	
VI	Antigen and Antibody structure and diversity:	8
	Antigen, epitopes and Adjuvents	
	Structure and isotypes of Immunoglobulins allotypes	
	and idiotypes	
	B- and T-cell receptors	
	B and T cell maturation	
	• Antibody diversity generation, somatic gene	
	rearrangements during B-lymphocyte differentiation,	
	allelic exclusion, affinity maturation, class switching,	
	somatic hypermutation	
VII	MHC, antigen processing and presentation:	7
	Major Histocompatibility complexes – class I & class	
	II MHC antigens, antigen processing.	
	 Antigen processing and presentation 	
	Autoimmune diseases, Immunodeficiency-AIDS and	
	SCID.	
VIII	Immunological Techniques and Vaccines:	7
	• Introduction to immunodiagnostics – Precipitation,	
	Agglutination, RIA, ELISA and Immunofluorescence.	

- Passive & active immunization.
- Types of vaccines-DNA vaccines, recombinant vaccines, inactivated vaccine
- Common indigenous vaccines

- 1. Pelczar M J, Reid R D, and Chan EC. (2001). **Microbiology** (5th ed.). New York: McGraw-Hill.
- 2. Willey J M, Sherwood L, Woolverton C J, Prescott L M, and Willey J M. (2011). **Prescott's Microbiology**. New York: McGraw-Hill.
- 3. Mattha, W, Berg C Y, and Black JG. (2005). **Microbiology, Principles and Explorations**. Boston, MA: John Wiley & Sons.
- 4. Cappuccino J G, and Welsh, C. (2016). **Microbiology: a Laboratory Manual**. Benjamin-Cummings Publishing Company.
- 5. Collins C H, Lyne PM, Grange J M, and Falkinham III J. (2004). Collins and Lyne's Microbiological Methods (8th ed.). Arnolds.
- 6. Levinson WE. (2020). **Review of Medical Microbiology and Immunology** (16th edition). McGraw Hill Education.
- 7. Ananthanarayana R, Panicker CKJ(2020). **Ananthanarayana and Panicker's Textbook of Microbiology**(11th edition) Universities Press (India) Pvt. Ltd
- 8. Punt J, Stranford S, Jones P., Owen JA, (2018). **Kuby Immunology**.(8th edition) New York: W.H. Freeman.
- 9. Delves P J, Martin SJ, Burton DR, and Roitt IM. (2017). **Roitt's Essential Immunology**.(13th edition). Wiley- Blackwell.
- 10. Murphy K, and Weaver C, (2016). **Janeway's Immunobiology**. (9th edition) New York: Garland Science.
- 11. Abbas AK, Lichtman AHH, Pillai S.(2017) **Cellular and Molecular Immunology** (9th edition)
- 12. Paul W E. (2012). Fundamental Immunology. New York: Raven Press.
- 13. Parham, P. (2005). **The Immune System**. New York: Garland Science.
- 14. Mohanty SK, Leela KS.(2014) **Textbook of Immunology**. (2nd Edition). Jaypee Brothers Medical Publishers Pvt Ltd.
- **15.** Hay FC, Westwood OMR.(2008). **Practical Immunology**.(4th Edition). Wiley Blackwell.

Course books published in Hindi must be prescribed by the University/College

Suggested link

- https://ocw.mit.edu/courses/find-by-topic/#cat=science&subcat=biology&spec=microbiology
- https://ocw.mit.edu/courses/find-by-topic/#cat=healthandmedicine&subcat=immunology
- https://nptel.ac.in/courses/102/103/102103038/
- https://nptel.ac.in/courses/102/105/102105083/
- https://nptel.ac.in/courses/102/103/102103015/
- https://nptel.ac.in/content/storage2/courses/102103013/pdf/mod7.pdf
- https://nptel.ac.in/content/storage2/courses/102103015/module1/lec1/1.html

Suggested Digital platform/Web link

Course prerequisite

To study this course, student must have passed semester III.

Suggested Continuous Internal Evaluation (CIE) methods

10 marks for Test

10 marks for presentation along with assignment
05 marks for Class interactions
Further Suggestions: None

Programme/Class: Diploma	Year: Second (2)	Semester: Fourth (IV)
Subject: Biotechnology		
Couse Code: B100402 P Course Title: Microbiology and Immunology Lab		
Course Outcomes		

After completion of this course, students will be able to:

- Understand methods of cleaning and sterilization of plasticwares and glasswares.
- understand and perform pure culture techniques which includes, pour plate and
- spread plate.

Credits:2

- understand the preparation and use of differential, selective and special media.
- understand and identify the morphology of cells of the immune system.
- understand the basic concepts of blood grouping.
- understand antigen antibody interactions and thus quantitate the presence of antigen and or antibodies in biological samples.

Creatts:2	Core Compulsory	
Maximum Marks: 100	Minimum Passing Marks: As per Un	iversity norms
(75(UE)+25(CIE))		
Total Number of Lectures-T	'utorials-Practical (in hours per week)L-	T-P: 0-0-4
	Topic	No. of Lectures
1. Safety me	easures in microbiology laboratory	60
2. Study of	f instruments: Compound microscope,	
Autoclave airflow	e, Hot air oven, PH meter, and Laminar	
3. Introducti	on to different sterilization techniques	
4. Isolation characteri	of bacteria & their biochemical zation.	
	methods: simple staining, Gram staining, ning, negative staining, hanging drop.	
6. Preparation	on of media and sterilization,	
7. Methods sources.	of isolation of bacteria from different	
8. Determina	ation of bacterial cell size by micrometry.	
9. Enumerat count.	ion of microorganism - total & viable	
10. Differenti	al leucocytes count	
11. Total leuc	cocytes count	
12. Total RBG	Count	
13. Haemagg	lutination assay	
14. Separation	n of serum from blood	
antibody a	immunodiffusion test using specific and antigen.	
16. ELISA de	emostration	

Suggested Reading

- 1. Pelczar M J, Reid R D, and Chan EC. (2001). **Microbiology** (5th ed.). New York: McGraw-Hill.
- 2. Willey J M, Sherwood L, Woolverton C J, Prescott L M, and Willey J M. (2011). **Prescott's Microbiology**. New York: McGraw-Hill.
- 3. Mattha, W, Berg C Y, and Black JG. (2005). **Microbiology, Principles and Explorations**. Boston, MA: John Wiley & Sons.
- 4. Cappuccino J G, and Welsh, C. (2016). **Microbiology: a Laboratory Manual**. Benjamin-Cummings Publishing Company.
- 5. Collins C H, Lyne PM, Grange J M, and Falkinham III J. (2004). Collins and Lyne's Microbiological Methods (8th ed.). Arnolds.
- 6. Levinson WE. (2020). **Review of Medical Microbiology and Immunology** (16th edition). McGraw Hill Education.
- 7. Ananthanarayana R, Panicker CKJ(2020). **Ananthanarayana and Panicker's Textbook of Microbiology**(11th edition) Universities Press (India) Pvt. Ltd
- 8. Punt J, Stranford S, Jones P., Owen JA, (2018). **Kuby Immunology**.(8th edition) New York: W.H. Freeman.
- 9. Delves P J, Martin SJ, Burton DR, and Roitt IM. (2017). **Roitt's Essential Immunology**.(13th edition). Wiley- Blackwell.
- 10. Murphy K, and Weaver C, (2016). **Janeway's Immunobiology**. (9th edition) New York: Garland Science

Course books published in Hindi must be prescribed by the University/College

Course prerequisite

To study this course, student must have passed semester III.

Suggested Continuous Internal Evaluation (CIE) methods

Total marks: 25 10 marks for Test

10 marks for presentation along with assignment

05 marks for Class interactions

Further Suggestions: None

Programme/Class: Degree	Year: Third (3)	Semester: Fifth (V)	
Subject: Biotechnology			
Couse Code: B100501T Course Title: Biostatistics and Bioinformatics			
Course Outcomes			

After completion of the course, students will be able to -

- learn the need of statistical approach, identify the different axiomatic approach.
- learn to study the variability of observation.
- know effective use of Office package –word, excel, ppt and publisher etc
- understand simple calculation usinf excel
- understand the basic theories and practicals of common computational tools and databases which facilitate investigation of molecular biology and evolution-related concepts.
- critically analyse and interpret results of their studies with the help of bioinfomatical and biostatistical tools.

Credits:	Credits: 4 Core Compulsory	
Maximu	m Marks: 100 Minimum Passing Marks: As per Universit	y norms
(75(UE)+25(CIE))		
Total Nu	-0-0	
Unit	Торіс	No. of Lectures
I	History and introduction to Bioinformatics:	7
	 Introduction and applications of bioinformatics 	
	• Data generation; Generation of large scale molecular	
	biology data. (Through Genome sequencing, Protein	
	sequencing, Gel electrophoresis, NMR Spectroscopy, X-Ray	
	Diffraction, and microarray). Applications of	
	Bioinformatics.	0
II	Databases, Data generation, Data storage and retrieval:	8
	General Introduction of Biological Databases; Nucleic acid Action (NCPL, DDPL) and EMPL) Protein detabases	
	databases (NCBI, DDBJ, and EMBL), Protein databases	
	(Primary, Composite, and Secondary).	
	• Specialized Genome databases: (SGD, TIGR, and ACeDB).	
	• Structure databases (CATH, SCOP, and PDBsum)	
	• File Format (Genbank, DDBJ, FASTA, PDB, SwissProt).	
	• Introduction to Metadata and search; Indices, Boolean,	
Fuzzy, Neighboring search. III Sequence and Phylogeny analysis:		8
111	Sequence and Phylogeny analysis:	O
	• Introduction to Sequences, alignments and Dynamic Programming; Local alignment and Global alignment	
	(algorithm and example), Pairwise alignment (BLAST and	
	FASTA Algorithm) and multiple sequence alignment	
	(Clustal W algorithm).	
	• Introduction to BLAST, using it on the web, Interpreting	
	results, Phylogenetic Analysis.	
	PCR primer designing etc.	
IV	Searching Databases:	7
	• SRS, Entrez, Sequence Similarity Searches-BLAST,	
	FASTA, Data Submission.	
	• Genome Annotation: Pattern and repeat finding, Gene	
	identification tools.	

V	Types and Collection of data:	7
	Primary and Secondary data, Classification and Graphical	
	representation of Statistical data.	
	 Measures of central tendency and Dispersion. 	
	Measures of Skewness and Kurtosis.	
VI	Probability:	8
	Definition of probability, Theorems on total and compound	
	probability	
	• Elementary ideas of Binomial, Poisson and Normal	
	distributions.	
VII	Sampling:	8
	Methods of sampling, confidence level, critical region,	
	testing of hypothesis and standard error, large sample test	
	and small sample test.	
	Problems on test of significance, t-test, chi-square test	
	for goodness of fit and analysis of variance (ANOVA)	
VIII	Correlation and Regression:	7
	• Types, Karl-Pearson's correlation, Spearman's Rank	
	correlation, Regression equation and fitting	
	Main features of regression analysis-simple and multiple	
	regression analysis	
	Differences between correlation and regression analysis	
	Suggested Deading	

- 1. Lesk, A. M. (2002). **Introduction to Bioinformatics**. Oxford: Oxford University Press.
- 2. Mount, D. W. (2001). **Bioinformatics: Sequence and Genome Analysis**. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
- 3. Baxevanis, A. D., & Ouellette, B. F. (2001). Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins. New York: Wiley-Interscience.
- 4. Pevsner, J. (2015). **Bioinformatics and Functional Genomics**. Hoboken, NJ.: Wiley-Blackwell.
- 5. Bourne, P. E., & Gu, J. (2009). Structural Bioinformatics. Hoboken, NJ: Wiley-Liss.
- 6. Sharma V. Munjal A. Shanker A.(2018). **A Textbook of Bioinformatics**.(2nd Edition). Rastogi Publication.
- 7. Choudhuri S. (2014) **Bioinformatics for beginners**. (1st edition) Elsevier.
- 8. Harisha S. (2019) Fundamentals of Bioinformatics. Dreamtech Press
- Rastogi SC. Mendiratta N. Rastogi P. (2013). Bioinformatics Methods and Applications Genomics Proteomics and Drug Discovery. (4th edition). Prentice Hall India Learning Private Limited
- 10. Ghosh Z. Mallick B. (2008). **Bioinformatics: Principles and Applications**. OUP India
- 11. Rosner, B. (2000). Fundamentals of Biostatistics. Boston, MA: Duxbury Press.
- 12. Daniel, W. W. (1987). **Biostatistics, a Foundation for Analysis in the Health Sciences**. New York: Wiley
- 13. Mariappan P. (2013) Biostatistics. Pearson
- 14. Rastogi VB.(2015). **Biostatistics** (3rd Edition). MedTec

Course books published in Hindi must be prescribed by the University/College

Suggested link

- https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-092-bioinformatics-and-proteomics-january-iap-2005/lecture-notes/
- https://ocw.mit.edu/courses/biology/7-91j-foundations-of-computational-and-systems-biology-spring-2014/
- https://ocw.mit.edu/courses/biology/7-91j-foundations-of-computational-and-systems-biology-spring-2014/lecture-slides/
- https://ocw.mit.edu/courses/mathematics/18-650-statistics-for-applications-fall-2016/
- https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statistics-spring-2014/
- https://ocw.mit.edu/courses/mathematics/18-443-statistics-for-applications-fall-2003/lecture-notes/

Suggested Digital platform/Web link

Course prerequisite

To study this course, student must have passed semester IV.

Suggested Continuous Internal Evaluation (CIE) methods

Total marks: 25 10 marks for Test

10 marks for presentation along with assignment

05 marks for Class interactions

Further Suggestions: None

Programme/Class: Degree	Year: Third (3)	Semester: Fifth (V)	
Subject: Biotechnology			
Couse Code: B100502T Course Title: Animal and Plant Biotechnology			
Course Outcomes (COs)			

After completion of this course, students will be able to-

- understand the principles, practices and application of animal biotechnology in Transgenesis, Tissue Engineering, and biopharmaceuticals.
- understand the principles, practices and applications of plant biotechnology, transgenic plant generation, plant tissue culture, plant genomics, and genetic transformation.
- understand applications of stem cells and tissues engineering.
- learn different gene delivery methods to deliver foreign gene in plants and animals
- know about different products of transgenic animals, plants and microbes.

Credits: 4	Core Compulsory
Maximum Marks: 100	Minimum Passing Marks: As per University norms
(75(UE)+25(CIE))	

Total Number of Lectures-Tutorials-Practical (in hours per week)L-T-P: 4-0-0

Unit	Topic	No. of Lectures	
I	Transgenesis:	7	
	• Introduction to transgenesis. Transgenic Animals – Mice, Cow, Pig, Sheep, Goat, Bird, Insect.		
	 Animal diseases need help of Biotechnology – Foot-and mouth disease, Coccidiosis, 		

	Trypanosomiasis, Theileriosis.	
II	Gene delivery methods for animals :	8
	 Viral vectors 	
	 Vector less or direct DNA transfer, particle 	
	bombardment, electroporation,	
	microinjection & chemical methods,	
	creation of animal models of human	
	diseases.	
III	Animal propagation:	6
	Artificial insemination, animal Clones.	
	• Conservation Biology – embryo transfer	
	techniques.	
IV	Genetic modification in Medicine:	8
	Gene therapy, types of gene therapy, vectors in	
	gene therapy, molecular engineering,	
	Human genetic engineering, problems & ethics	
	Introduction to Stem Cell Technology and its	
V	applications Introduction Crys and arganizations differentiations	7
•	Introduction, Cryo and organogenic differentiation:Types of culture: Seed , Embryo, Callus, Organs,	1
	Cell and Protoplast culture.	
	Micropopagation Axillary bud proliferation,	
	Meristem and shoot tip culture, cud culture,	
	organogenesis, embryogenesis, advantages and	
	disadvantages of micropropagation.	
	Protoplast isolation and fusion, methods of	
	protoplast isolation, Protoplast development,	
	Somatic hybridization, identification and selection	
	of hybrid cells, Cybrids, Potential of somatic	
	hybridization limitations.	
	• Somaclonal variation nomenclature, methods,	
	applications basis and disadvantages	
VI	In vitro haploid production Androgenic methods:	8
	Anther culture, Microspore culture androgenesis	
	Significance and use of haploids, Ploidy level and	
	chromosome doubling, diplodization, Gynogenic	
	haploids, factors effecting gynogenesis	
	Chromosome elimination techniques for production	
****	of haploids in cereals.	0
VII	Plant Growth Promoting bacteria:	8
	Nitrogen fixation,	
	Nitrogenase, Hydrogenase, Nodulation Discontrol of paths gang	
	Biocontrol of pathogens Growth growting by free living be storie	
X/III	Growth promotion by free-living bacteria. Transgenerics.	0
VIII	Transgenesis:	8
	Plant transformation technologies	
	• Agrobacterium tumifaciens infection, basis of	
	tumor formation, features of Ti & Ri plasmids,	

- mechanisms of DNA transfer, role of virulence genes, use of Ti plasmid as vector, binary vectors
- Application of plant transformation for productivity and performance: Herbicides resistance, insect resistance, Bt genes, non-Bt like protease inhibitors, virus resistance, long shelf life of fruits and flowers

- 1. Razdan, M. K. (2003). Introduction to Plant Tissue Culture. Enfield, NH: Science
- 2. Chawla, H. S. (2000). Introduction to Plant Biotechnology. Enfield, NH: Science.
- 3. Smith R(2012). **Plant Tissue Culture** (3rd Edition) Academic Press.
- 4. Slater, A., Scott, N. W., & Fowler, M. R. (2008). Plant Biotechnology: an Introduction to Genetic Engineering. Oxford: Oxford University Press.
- 5. Buchanan, B. B., Gruissem, W., & Jones, R. L. (2015). **Biochemistry & Molecular Biology of Plants.** Chichester, West Sussex: John Wiley & Sons.
- 6. Umesha, S. (2013). **Plant Biotechnology**. The Energy and Resources.
- 7. Glick, B. R., & Pasternak, J. J. (2010). **Molecular Biotechnology: Principles and Applications of Recombinant DNA. Washington**, D.C.: ASM Press.
- 8. Brown, T. A. (2006). **Gene Cloning and DNA Analysis: an Introduction.** Oxford: Blackwell Pub.
- 9. Primrose, S. B., & Twyman, R. M. (2006). **Principles of Gene Manipulation and Genomics.** Malden, MA: Blackwell Pub.
- 10. Slater, A., Scott, N. W., & Fowler, M. R. (2003). **Plant Biotechnology: The Genetic Manipulation of Plants**. Oxford: Oxford University Press.
- 11. Levine, M. M. (2004). New Generation Vaccines. New York: M. Dekker.
- 12. Pörtner, R. (2007). **Animal Cell Biotechnology: Methods and Protocols**. Totowa, NJ: Humana Press
- 13. Singh B. Gautam SK (2013). **Textbook of animal biotechnology**. The Energy and Resources Institute, TERI
- 14. Gupta PK.(2018) Animal Biotechnology. Rastogi Publications
- 15. Singh BD. (2015). **Plant Biotechnology** (3rd edition). Kalyani Publishers
- 16. Chawla HS. (2020) **Introduction to Plant Biotechnology**(3rd edition) OXFORD & IBH Publishing
- 17. Satyanarayana U (2020). Biotechnology. Books and Allied (P) Ltd
- 18. Singh BD. (2015). **Biotechnology: Expanding Horizons** (4th edition). Kalyani Publishers
- 19. Dubey RC. (2014) **A Textbook of Biotechnology** (5th edition) S Chand and Company Ltd.
- 20. सिंह बी डी(2017) बायोटेक्नोलोजी Kalyani Publishers

Course books published in Hindi must be prescribed by the University/College

Suggested link

- https://ocw.mit.edu/courses/find-by-topic/#cat=science&subcat=biology&spec=stemcells
- https://ocw.mit.edu/courses/materials-science-and-engineering/3-051j-materials-for-biomedical-applications-spring-2006/lecture-notes/lecture13.pdf
- https://ocw.mit.edu/courses/biological-engineering/20-109-laboratory-fundamentals-in-biological-engineering-fall-2007/lecture-notes/
- https://ocw.mit.edu/courses/health-sciences-and-technology/hst-535-principles-and-practice-of-tissue-engineering-fall-2004/
- https://ocw.mit.edu/courses/biological-engineering/20-109-laboratory-fundamentals-in-

biological-engineering-fall-2007/labs/mod1_3/			
Suggested Digital platform/Web link			
Course prerequisite			
To study this course, student must have passed semester V.			
Suggested Continuous Internal Evaluation (CIE) methods			
Total marks: 25			
10 marks for Test			
10 marks for presentation along with assignment			
05 marks for Class interactions			
Further Suggestions: None			

Programme/Class: Degree	Year: Third (3)	Semester: Fifth (V)	
Subject: Biotechnology			
Couse Code: B100503P Course Title: Bioinformatics, Biostatistic		s, Biostatistics	
Tissue culture Lab			
Course Outcomes (COs)			
Students should be able to -			
 apply basic bioinformatics tools for the 		ner areas of their	
biotechnology and microbiology program			
 gene/protein homologs, designing primers 	s, identifying mutations, etc.		
 do cleaning, sterilization of laboratory, pla 	astic and glasswares.		
 prepare different types of culture media for 	or animal and plant cell culture		
 understand and solve the problems in the 	area of animal and plant Biotec	chnology.	
Credits: 2	Core Compulsory		
Maximum Marks: 100 (75(UE)+25(CIE))	Minimum Passing Marks: A	As per University	
	norms		
Total Number of Lectures-Tutorials-Practical	(in hours per week)L-T-P: ()-0-4	
Topic		No. of Lectures	
1. An introduction to Computer	s, MS-Word, MS Excel, MS	60	
Power Point.			
2. Sequence information resou	_		
_	Genbank, Entrez, Swissprot/TrEMBL, UniProt.		
, , , , , , , , , , , , , , , , , , ,	3. Similarity searches using tools like BLAST and		
interpretation of results.			
4. Multiple sequence alignme	ent using ClustalW and		
	interpretation of results.		
5. Use of gene prediction me	ethods (GRAIL, Genscan,		
Glimmer).			
l	6. Use of various primer designing and restriction site		
prediction tools.	1 1 1		
7. Use of different protein stru	acture prediction databases		
(PDB, SCOP, CATH etc.).	3.40		
8. Exercise to data entry, edit, o	copy, move etc. using MS		
EXCEL spreadsheet			

- 9. Computations analysis of biological data by Mean, Median, Mode, S.D., Correlation, regression Analysis, Chi square test, Student test, ANOVA
- 10. Designing of bar diagram, pi chart, histogram, scatter plots, in EXCEL for presentation of data.
- 11. Measure of skewness and kurtosis
- 12. Sterilization techniques: Theory and Practical: Glass ware sterilization, Media sterilization, Laboratory sterilization
- 13. Sources of contamination and decontamination measures.
- 14. Preparation of Hanks Balanced salt solution
- 15. Preparation of Minimal Essential Growth medium
- 16. Preparation of simple growth nutrient (knop's medium), full strength, half strength, solid and liquid.
- 17. Preparation of complex nutrient medium (Murashige & Skoog's medium)
- 18. To selection, Prune, sterilize and prepare an explant for culture.
- 19. Significance of growth hormones in culture medium.
- 20. To demonstrate various steps of Micropropagation.

- 1. Lesk, A. M. (2002). **Introduction to Bioinformatics**. Oxford: Oxford University Press.
- 2. Mount, D. W. (2001). **Bioinformatics: Sequence and Genome Analysis**. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
- 3. Baxevanis, A. D., & Ouellette, B. F. (2001). Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins. New York: Wiley-Interscience.
- 4. Pevsner, J. (2015). **Bioinformatics and Functional Genomics**. Hoboken, NJ.: Wiley-Blackwell.
- 5. Bourne, P. E., & Gu, J. (2009). Structural Bioinformatics. Hoboken, NJ: Wiley-Liss.
- 6. Sharma V. Munjal A. Shanker A.(2018). **A Textbook of Bioinformatics**.(2nd Edition). Rastogi Publication.
- 7. Choudhuri S. (2014) **Bioinformatics for beginners**. (1st edition) Elsevier.
- 8. Harisha S. (2019) **Fundamentals of Bioinformatics**. Dreamtech Press
- 9. Rastogi SC. Mendiratta N. Rastogi P. (2013). **Bioinformatics Methods and Applications Genomics Proteomics and Drug Discovery.** (4th edition). Prentice Hall India Learning Private Limited
- 10. Ghosh Z. Mallick B. (2008). Bioinformatics: Principles and Applications. OUP India
- 11. Rosner, B. (2000). Fundamentals of Biostatistics. Boston, MA: Duxbury Press.
- 12. Daniel, W. W. (1987). **Biostatistics, a Foundation for Analysis in the Health Sciences**. New York: Wiley
- 13. Mariappan P. (2013) **Biostatistics**. Pearson
- **14.** Rastogi VB.(2015). **Biostatistics** (3rd Edition). MedTec

Course books published in Hindi must be prescribed by the University/College

Course prerequisite

To study this course, student must have passed semester IV.

Suggested Continuous Internal Evaluation (CIE) methods

Total marks: 25

10 marks for Test

10 marks for presentation along with assignment

05 marks for Class interactions	
Further Suggestions: None	

act. Dietachnology			
Subject: Biotechnology			
Course Code: B100601T Course Title: Industrial and Environmental Biotechnology			
Course Outcomes			
	e Title: Industrial and Enviro		

After successful completion of the course, student will be able to:

- understand the problems in isolation, strain improvement and growth of microorganisms in industrial processes.
- isolate and improve the industrially important microorganisms.
- understand design and types of fermenters and operation of fermenters.
- learn fundamentals of Environmental Biotechnology
- understand the importance of clean (pollution free) environment
- understand biotechnological solutions to address environmental issues including pollution, mineral resource winning, renewable energy and water recycling.
- understand the regulation of bioethics and policies of IPR and entrepreneurship.

Credits: 4	Elective	
Maximum Marks: 100	Minimum Passing Marks: As per University norms	
(75(UE)+25(CIE))		
Total Number of Lectures-Tutorials-Practical (in hours per week)L-T-P: 4-0-0		
Total 1, and the first of the f		

	or Number of Lectures-Tutorials-Fractical (in hours per week)L-1-F: 4-0-0				
Unit	Topic	No. of Lectures			
I	Introduction of Industrial microbiology and Bioprocess	7			
	technology:				
	 History-Introduction, scope and relation with other 				
	sciences.				
	 Screening for new metabolites: primary and secondary 				
	products.				
	 Strain development through selection, mutations and 				
	recombination, and other recent methods				
II	Bioprocess technology:	9			
	 Introduction to bioprocess technology. 				
	 Design and working of a typical bioreactor 				
	Range of bioprocess technology and its chronological				
	development.				
	• Basic principle components of fermentation				
	technology. Types of microbial culture and its growth				
	kinetics– Batch, Fedbatch and Continuous culture.				
III	Production of alcohols, antibiotic and enzymes:	9			
	 Production of alcohols (Ethanol) and organic acids 				
	(citric and acetic).				
	• Production of biologically active compounds:				

	antibiotics (penicillin) and enzymes (amylase,			
	protease).Production of microbial food and single cell proteins			
	Bioreactor for immobilized cells/enzyme system			
T 7 7	Biosensors and their applications Francisco and a selections	8		
1 1 1	IV Environment and pollution:			
	Physico-chemical and biological characteristics of			
	environment.			
	Water, soil and air as a component of environment. Bellete at a Nutrice and a component of environment.			
	Pollutants: Nature, origin, source, monitoring and their imports			
	their impacts.			
	Air, Water and Noise pollution Conventional field and their environmental impact			
V	• Conventional fuels and their environmental impact Bioremediation:	8		
v		0		
	 Bioremediation of soil & water contaminated with oil spills, heavy metals and detergents. 			
	 Degradation of lignin and cellulose using microbes. 			
	Phyto-remediation.			
	 Degradation of pesticides and other toxic chemicals by 			
	micro-organisms- degradation aromatic and			
	chlorinates hydrocarbons and petroleum products.			
VI	Sewage treatment and biofertilizers:	7		
, -	Treatment of municipal waste and Industrial effluents.	•		
	Bio-fertilizers: Role of symbiotic and asymbiotic			
	nitrogen fixing bacteria in the enrichment of soil.			
	 Algal and fungal biofertilizers (VAM) 			
VIII	Bioleaching and genetically modified organisms:	6		
	• Enrichment of ores by microorganisms (Gold, Copper			
	and Uranium).			
	• Environmental significance of genetically modified			
	microbes, plants and animals.			
VIII	Bioethics, IPR, Entrepreneurship:	6		
	 Importance of Bioethics, IPR and entrepreneurship 			
	 Introduction to Intellectual Property Rights (IPR)- 			
	World Intellectual properties, Indian Intellectual			
	properties			
	Entrepreneurship in India			
1	Suggested Peeding			

- 1. Glazier AN and Nikaido H (2007).Microbial Biotechnology Fundamental & Applied Microbiology Second Edition. Cambridge University Press.
- 2. Casida LE (2019) **Industrial Microbiology**. Second Edition,New Age International Publisher.
- 3. Stanbury P F and Whitaker, A. (2010). **Principles of Fermentation Technology**. Oxford: Pergamon Press
- 4. Shuler M L and Kargi F. (2002). **Bioprocess Engineering: Basic Concepts**. Upper Saddle River, NJ: Prentice Hall.
- 5. Crueger W and Crueger A (2002) Cruegers Biotechnology: **A Textbook of Industrial Microbiology.** Third Edition, Panima Publishing Corp., New Delhi.
- 6. Blanch H W and Clark D S. (1997). Biochemical Engineering. New York: M.

Dekker.

- 7. Bailey J E and Ollis D F. (1986). **Biochemical Engineering Fundamentals.** New York: McGraw-Hill.
- 8. Richard HB, Julian ED, Arnold LD. (2010) Manual of Industrial Microbiology and Biotechnology, 3rd Edition
- 9. Thakur IS. (2011)**Environmental Biotechnology basic concepts and applications.** I. K. International Publishing House Pvt. Limited
- 10. Evans GM and J. C. Furlong (2003). **Environmental Biotechnology: Theory and Applications**. Wiley Publishers.
- 11. Ritmann R and McCarty P L (2000). Environmental Biotechnology: Principle & Applications. 2nd Ed., McGraw Hill Science.
- 12. Scragg A., (2005) **Environmental Biotechnology**. Pearson Education Limited.
- 13. Srinivas TR (2008). Environmental Biotechnology. New Age International Pvt. Ltd.
- 14. Chapman JL . Ecology: Principal & Application. Cambridge Univ. Press.
- 15. Odum E and Barret G. (2004) **Fundamentals of Ecology**. Nataraj Publication.

Course books published in Hindi must be prescribed by the University/College

Suggested link

- https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-34-waste-containment-and-remediation-technology-spring-2004/lecture-notes/
- https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-018j-ecology-i-the-earth-system-fall-2009/
- https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-018j-ecology-i-the-earth-system-fall-2009/lecture-notes/MIT1 018JF09 Lec07.pdf
- https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-89-environmental-microbiology-fall-2004/
- https://ocw.mit.edu/high-school/biology/exam-prep/cellular-energetics/fermentation-cellular-respiration/fermentation/

Suggested Digital platform/Web link

Course prerequisite

To study this course, a student must have passed semester V.

Suggested Continuous Internal Evaluation (CIE) methods

Total marks: 25 10 marks for Test

10 marks for presentation along with assignment

05 marks for Class interactions

Further Suggestions: None

Programme/Class: Degree	Year: Third (3)	Semester: Sixth (VI)	
Subject: Biotechnology			
Couse Code: B100602T Course Title: Food Biotechnology			
Course Outcomes			

After successful completion of the course, student will be able to:

- understand the history and evolution of food technology and processing.
- understand the importance microorganisms in food preservation
- learn various food processing and preservation technologies.

Credits: 4		Core Compulsory				
Maximum I		Minimum Passing Marks: As per University norms				
	(75(UE)+25(CIE))					
Total Number of Lectures-Tutorials-Practical (in hours per week)L-T-P: 4-0-0						
Unit		Topic	No. of Lectures			
I	Introduction to Food B	iotechnology	7			
	 Historical Background of Food technology 					
	• Traditional fermented foods (meat, fish, bread,					
	sauerkraut, soy bean, coffee, cocoa, tea)					
	• Importance, global trends, codex guidelines,					
	nutritional labelling in India, FSSAI guidelines					
	Improvements through Biotechnology (e.g. Golden					
	Rice, Potato, Fla	vr Savr Tomato etc.)				
II	Enzymes in Food Indus	stry:	8			
	 Carbohydrases 					
	 Proteasase 					
	 Lipases 					
		Food using enzymes:				
	=	ous enzymes in food quality,				
		processing aid and ingredients				
III	Food Fermentations:		7			
		ted foods - Cheese, Butter, Yoghurt,				
		nsed milk and kefir.				
		ges (Beer, Wine, Whisky),				
TX7		es, Soy products, Tea, coffee etc.	7			
IV	Food preservation:		7			
	• Food adulterati	ion and prevailing food standards in				
		oorganisms in milk and their types.				
		d examination of milk (standard plate				
	_	microscopic count, reductase and				
	phosphatase tes	•				
		nd pasteurization of milk.				
V	Value addition product		7			
	-	products like High Fructose Syrup,				
		SCPs (e.g. Spirulina, Yeast etc.) as				
	food supplements	s,				
	• Edible fungus: M	Iushrooms. Potential of Probiotics.				
		ers: Nucleosides, nucleotides and				
	<u> </u>	ds. Organic acids (Citric acid, Acetic				
		ses in foods/food products.				
VI	Vitamins and Minerals:		7			
		Vitamins and their supplementation in				
	foods and feedsto					
	•	n and storage. Food Processing				
	<u>=</u>	rals and their function in body and				
	deficiency condit	LIOHS				

	 Requirements, allowances, enrichment, restorations, fortifications, losses of minerals, optimization and retention of minerals; 	
VII	Growth of microorganisms in food:	8
	 Intrinsic and extrinsic factors. 	
	 Food Spoilage (microbial and non-microbial) Control mechanisms of food spoilage: Physical and Chemical. Microbial spoilage of food and factors affecting them: Spoilage of various kinds of foods: fish. meat, poultry, 	
	sea foods, bread and dairy products).	
	 Food adulteration and prevailing food standards in India. 	
	Indicator Microorganisms: As an indicator of good quality	
VIII	Food and water borne diseases:	9
	Gastroenteritis, Diarrhoea, Shigellosis, Salmonellosis,	
	Typhoid, Cholera, Polio, Hepatitis, Dental Infections,	
	etc.	
	Food borne intoxications: Staphylococcal, Bacillus,	
	Clostridium etc.	
	 Detection of food-borne pathogens. 	

- 1. Ray B and Bhunia A. 2008. **Fundamental Food Microbiology**, 4th Ed., CRC press, Taylor and Francis Group, USA.
- 2. Martin RA and Maurice OM. 2008. **Food Microbiology**, 3rd Ed., The Royal Society of Chemistry, Cambridge, UK.
- 3. James M J.. 2000. **Modern Food Microbiology**, 6th Ed. Aspen Publishers, Inc., Gaithersburg, Maryland, USA.
- 4. Frazier WC, and Westhoff DC. **Food Microbiology**. Fourth edition, MacGraw Hills publication
- 5. Lopez GFG, Canaas G, Nathan EV. Food Sciences and Food biotechnology.
- 6. Adams AR, and Moss MO. *Food Microbiology*. Third edition, Royal Society of Chemistry publishing .
- 7. Hohn T and Leisinger KM. Biotechnology of Food Crops in Developing Countries.
- 8. Doyle MP, Beuchat LR and Montville TJ. **Food Microbiology Fundamentals and Frontiers**. ASM Press.
- 9. Schwartzberg HG, RaoMA. (Eds.) **Biotechnology and Food Process Engineering** . **Course books published in Hindi must be prescribed by the University/College**

Suggested link

Suggested link

- https://ocw.mit.edu/courses/linguistics-and-philosophy/24-03-good-food-ethics-and-politics-of-food-spring-2017/lecture-notes/MIT24_03S17_lec24.pdf
- https://ocw.mit.edu/courses/linguistics-and-philosophy/24-03-good-food-ethics-and-politics-of-food-spring-2017/lecture-notes/MIT24_03S17_lec20.pdf
- https://www.rug.nl/research/irees/research/edulink-fsba/fsba-course-modules/fsba-module-2-unit-3-notes-english.pdf
- https://foodinsight.org/wp-content/uploads/2003/03/Biotech-Guide.pdf

•

Suggested Digital platform/Web link

Course prerequisite

To study this course, student must have passed semester V.

Suggested Continuous Internal Evaluation (CIE) methods

Total marks: 25 10 marks for Test

10 marks for presentation along with assignment

05 marks for Class interactions

Further Suggestions: None

Programme/Class: Degree	Year: Third (3)	Semester: Sixth (VI)				
	Subject: Biotechnology					
Couse Code: B100603P	Course Title: Industrial and Environmental Biotechnology					
	Lab					
Course Outcomes						
After completion of this course,						
	• understand various methods of screening of industrially important microorganisms					
from different sources.	from different sources.					
• understand the working of small scale fermenter and also determine the aeration						
efficiency of the fermenter						
 understand the technique of immobilization of cells like yeast and E.coli. 						
Credits: 2 Core Compulsory						
Maximum Marks: 100	Minimum Passing Marks: As per	University norms				
(75(UE)+25(CIE))						
Total Number of Lectures-Tutorials-Practical (in hours per week)L-T-P: 0-0-4						
	Topic	No. of Lectures				
	of bacterial growth curve.	60				
	2. Calculation thermal death point (TDP) of a microbial					
	sample.					
	3. Production and analysis of ethanol.					
	4. Production and analysis of amylase					
	5. Production and analysis of lactic acid.					
	6. Isolation of industrially important microorganism					
	from natural resource.					
	7. Calculation of Total Dissolved Solids (TDS) of water					
<u> </u>	sample.					
	8. Calculation of BOD of water sample.					
	9. Calculation of COD of water sample.					
10. Bacterial Examination of Water by MPN Method.						
Suggested Reading 1. Clorier AN and Nilvaida II (2007) Microbial Distrachaslagy. Fundamental & Applied						
1. Glazier AN and Nikaido H (2007). Microbial Biotechnology – Fundamental & Applied						

Microbiology – Second Edition. Cambridge University Press.

- 2. Casida LE (2019) **Industrial Microbiology**. Second Edition, New Age International Publisher.
- 3. Stanbury P F and Whitaker, A. (2010). **Principles of Fermentation Technology**. Oxford: Pergamon Press
- 4. Crueger W and Crueger A (2002) Crueger's Biotechnology: **A Textbook of Industrial Microbiology.** Third Edition, Panima Publishing Corp., New Delhi.
- 5. Blanch H W and Clark D S. (1997). **Biochemical Engineering**. New York: M. Dekker.
- 6. Bailey J E and Ollis D F. (1986). **Biochemical Engineering Fundamentals.** New York: McGraw-Hill.
- 7. Richard HB, Julian ED, Arnold LD. (2010) Manual of Industrial Microbiology and Biotechnology, 3rd Edition
- 8. Thakur IS. (2011)**Environmental Biotechnology basic concepts and applications.** I. K. International Publishing House Pvt. Limited
- 9. Evans GM and J. C. Furlong (2003). **Environmental Biotechnology: Theory and Applications**. Wiley Publishers.
- 10. Scragg A., (2005) Environmental Biotechnology. Pearson Education Limited.
- 11. Srinivas TR (2008). Environmental Biotechnology. New Age International Pvt. Ltd.

Course books published in Hindi must be prescribed by the University/College

Course prerequisite

To study this course, student must have passed semester V.

Suggested Continuous Internal Evaluation (CIE) methods

Total marks: 25 10 marks for Test

10 marks for presentation along with assignment

05 marks for Class interactions

Further Suggestions: None